Vision-based Bicyclist Detection and Tracking for Intelligent Vehicles

Hyunggi Cho, Paul E. Rybski and Wende Zhang

Abstract— This paper presents a vision-based framework for
intelligent vehicles to detect and track people riding bicgles in
urban traffic environments. To deal with dramatic appearance
changes of a bicycle according to different viewpoints as ==
well as nonrigid nature of human appearance, a method is
proposed which employs complementary detection and trackig
algorithms. In the detection phase, we use multiple view-lmed
detectors: frontal, rear, and right/left side view. For eah view
detector, a linear Support Vector Machine (SVM) is used
for object classification in combination with Histograms of
Oriented Gradients (HOG) which is one of the most discrimi-
native features. Furthermore, a real-time enhancement forthe
detection process is implemented using the Integral Histagm
method and a coarse-to-fine cascade approach. Tracking phas
is performed by a multiple patch-based Lucas-Kanade tracke
We first run the Harris corner detector over the bounding
box which is the result of our detector. Each of the corner
points can be a good feature to track and, in consequence,
becomes a template of each instance of multiple Lucas-Kanad

trackers. To manage the set of patches efficiently, a novel sensor technology has its own advantages and limitations,

method based on spectral clustering algorithm is proposed. gensor fusion in certain levels has recently been considere
Quantitative experiments have been conducted to show the . .
as a promising and desirable approach [13].

effectiveness of each component of the proposed framework. Ay .
For our work, we are considering the use of video

I. INTRODUCTION cameras as the primary sensor system for detecting and

. . tracking bicyclists. Cameras are attractive in that they no

Research on safety design of vehicles has focused on . . . .
. . : only capture high-resolution views of scenes that include
protecting drivers and passengers from accidents. Many con

; th color and texture information, but also in general are
cepts and devices have been developed, from new types.o . .
. ) ; . . 7 "Tinexpensive as compared to other sensor technologies such
safety airbag and electronic equipment to intelligentidgv

assistance systems [12]. In the last few years, however, g LIDAR or RADAR. However, despite their attractive

. aspects, vision-based bicyclist and pedestrian detedsion
trend of research has been extended to protecting vulnerg; .
: CS still a challenging problem due to the fact that people can
ble road users (VRUs) such as pedestrians, bicyclists, two . . i
; : appear quite different from each other due to differences
wheelers, and other small vehicles [8]. This can be regarde . . .
. L in clothing/hairstyle, body pose, as well as motion. Real-
as a natural trend to enrich total driving safety. Among ¢hes ; :
, - . R world outdoor environments are complex and fluid and
VRU’s, as shown in Figure 1, pedestrians and bicyclists are S C
, - . include cluttered backgrounds, changing illuminationd an
the weakest traffic participants because there is no special . o : .
variable weather conditions which can further complicate

protection device or mechanism against the CONSEQUENGRR detection and tracking problem. Furthermore, because

Of. accidents (save for helmets_ worn by b'CyC“StS)'. I:th|s application is for supporting autonomous vehicleg, th
this reason, accurate and real-time pedestrian and stycl| . . .

i ; sensors are mounted on moving platforms which once again
detection techniques have emerged as a hot research t0|?1lc

in the field of computer vision and Intelligent Transpoati creases the complexity. To tackle these difficulties, ynan

Systems (ITSs), and a great variety of approaches have béré'herestmg and promising vision techniques have been pro-

: : . osed from the computer vision and ITS communities. Some
proposed in the research community (see Section I for MOTF this work is used already in practical real-time pedestri
detail). To this end, different approaches use differensses yinp P

) . detection systems [10], [1]. However, these systems mainly
such as an ultrasonic sensor, thermopile sensor, lasanecan . . S )
focus on pedestrians, not bicyclists; indeed there is a eomp

microwave radar and cameras, and sometimes their fusion | S : .
. . . . afive lack of research about bicyclist detection and tnagki
exploited to result in more robust detection [8]. Since gver,, .
While these two problems share many common features,
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Fig. 1. Examples of Vulnerable Road Users. Among these VRU's
pedestrians and bicyclists are the weakest traffic paatitgp because there
is no special protection device or mechanism against theemprences of
accidents.



rithm and is coupled to a computationally efficient tracking For the detection of pedestrians, various combinations
algorithm. The contributions of this work are summarizeaf features and classifiers can be applied to recognize a
into the following two aspects: pedestrian. Selecting the correct feature is important be-
Fast bicyclist detector:to deal with dramatic appearancecause overall performance of the system depends on the
changes of a bicycle according to viewpoints and, at the sardécriminative power of features used in detection algonit
time satisfy real-time constraints our application domaifRecent research shows three main features: appearance,
needs, we use four view-based detectors: frontal, rear asdape, and motion. Some of the features used for appearance-
right/left side view. For each detector, we implement dased detection are Haar wavelets [15] and Gabor filter
Histogram Oriented Gradients (HOG) based detector [4] arulitputs [2]. In [22], texture information is extracted ugin
apply it as a building block to our bicyclist detection/tkaty ~ simple masks (called Haar-like features), and classifioas
framework. One problem of the HOG based detector is ifgerformed based on integrating the weak classifiers oltaine
slow performance, which exists for two reasons. First, thifom these masks. As for the shape-based features, sym-
HOG descriptor basically uses a dense encoding schemmetry, edge template [10], histogram of oriented gradients
of the image region (or template). Second, it has to sear¢dHlOG) [4], [25], edgelet [24], and shapelet [18] have been
for interesting objects in multi-level scale images. Toveol exploited. Motion is also an important cue in detecting
this problem, we follow the approach proposedZiyuand pedestrians. However, in the case of cameras installed on a
Avidan [25], applying two methods to speed up the HOGmoving vehicle, it is not easy to find independent moving
based detector. The first one is to use the concept of “Integrebjects. Thus, a more complicated method is required to
Histogram” [17] to speed up the feature extraction processompensate for ego-motion of the vehicle. Compared to
The other method is to use a boosting algorithm [7] to speedotion cue, the beauty of shape-based approach is that it
up the classification process. We use AdaBoost to select than recognize both moving and stationary pedestrians. In
best features and construct a cascade of classifiers. addition, the discriminative power of shape-based feature
Multiple patch-based Lucas-Kanade tracker:in order is usually stronger than that of appearance-based features
to efficiently deal with articulate bicyclist shape and abta For the tracking of pedestrian, a number of mathematical
the trajectory of bicycles, we apply a multiple patch-basettameworks have been proposed. Kalman filter or particle
Lucas-Kanade tracker to our framework. First, good featurdilter-based methods, mean-shift algorithm, and opticaVflo
to track are detected by running the Harris corner detectbased methods are the most frequently used frameworks
over the bounding box returned by our detector. Each dbr such tasks. In [10]Gavrila and Giebelused ana — 3
the corner-like points becomes a center of a Lucas-Kanattecker to overcome gaps in detection. Indeed, the trasker i
template of each instance of multiple Lucas-Kanade trackera simplified Kalman filter with a constant velocity model and
Since we cannot guarantee that all the multiple patches goeedetermined steady-state gains. Particle filters haoersh
necessarily found on the bicyclist, we need a high leveltpataobust performance in handling non-Gaussianity and non-
management scheme not only to find outliers (patches frolimearity. Smithet al. [20] used a particle filter successfully
the background) but also to evolve the topology betweeto track a variable number of interacting people using a fixed
multiple patches in an on-line fashion. Here, we propose @amera. In [3],Comaniciuand Meer used a color histogram
new method based on spectral clustering algorithm to cbntrocomputed from a circular region as a representation of an
geometric constraints of multiple patches. object. Instead of performing an intensive search for iogat
The structure of this paper is as follows. We begin withihe object, they use the mean-shift procedure. The medin-shi
Section Il by reviewing the previous work on the pedestriatracker maximizes the appearance similarity iterativeyy b
detection and tracking problem. This is due to the fact tharomparing the histograms of the object and the candidate
there is a lack of research on bicycle detection and trackirrggions in the next image. Another approach to track a
and we believe our problem is most related to the problemegion is to compute its translation by using an optical flow-
of pedestrians. In Section Il we formulate the detectiothased method. Optical flow methods are used for generating
problem in a static image and give the details of our viewdense flow fields by computing the flow vector of each pixel
based detectors. We then discuss the tracking problem umder the brightness constancy constraint. This comjputati
Section IV. The experimental results and comparisons aig always carried out in the neighborhood of the pixel either
presented in Section V. We conclude in Section VI. algebraically [14] or geometrically. In [19%hi and Tomasi
proposed the KLT tracker which iteratively computes the
Il. RELATED WORK translation(du, dv) of a region (e.g.25 x 25 patch) centered
Many interesting vision-based approaches for pedestrim an interest point. Once the new location of the interest
detection and tracking have been proposed. Here, we orggint is obtained, the KLT tracker evaluates the quality of
focus on research using a monocular camera in the visibllee tracked patch by computing the affine transformation
spectrum. Thus, we omit work related to the use of infraredetween the corresponding patches in consecutive frames.
cameras and stereo vision. For the earlier work on this fopitf the sum of square difference between the current patch
refer to the surveys oGavrila [9] and Li et al. [12]. More and the projected patch is small, they continue tracking the
comprehensive surveys, including the most recent resear@ature, otherwise the feature is eliminated.
efforts in the field, can be found in [8], [6], [5].



I1l. FAST BICYCLIST DETECTION ‘

W, W,
More confident, L1 Lo Weim Wiy

Less weight
The goal of the detection process is to recognize bicyclis Wer i l e iy
and find their exact location from a static image. One @ Upcite '
the most common solution is to define object detection ¢ | weignts ‘ 'i !

Negative samples

a binary classification problem using a traditional sliding
window approach. The sliding window method evaluates
sub-image at multiple different scales and locations ove
the images. At each location, features are extracted fro
the sub-image and the classifier is run on these features
check whether the region contains interest objects. Niédfura
next fundamental questions are “What features are mc Sirang classifier: 3 0l
discriminative ?”, “How can we speed up the whole detectio..
process ?”,and “Can the features cover all variability in
appearance ?” We will discuss each of these questions and
give our best answers in the following subsections.

&
Select best classifier with minimum error &
(Variable-size HOG feature in this area and linear SVM classifier)

‘ Weak classifier with a single feature (ht) and confidence value (C(t)

Fig. 2. Feature selection process using AdaBoost

B. AdaBoost Classifier
A. Integral HOG Features

Both fast feature extraction and fast classification are

For the answer to the first question, a number of featuregucial factors for the second question. We already have
have been explored. Some important features are discusseghie half of the solution with the use of Integral HOG
Section II. According to the recent comprehensive evatiati features. The second half of the solution comes from the
studies [5], [6], it is shown that histograms of orienteddea proposed byiola andJoneg21]. They used a variant of
gradients (HOG) still shows best performance as a singl&daBoost learning technique to find the best set of Haar-like
feature relative to other existing feature sets. features and to construct a cascade of classifiers. Although

In [4], Dalal and Triggs proposed a dense encodingthis rejector-based cascade is still run in the sliding wind
scheme of local histograms of oriented gradients (HOG). Thaanner, it dramatically speeds up the detection process by
aim of this method is to describe an image by a set of locébcusing attention on more promising regions of the image.
histograms. These histograms count occurrences of gtadiém other words, the goal of constructing a cascade is to
orientation in a local part of the image. More specificallymatch the complexity of a classifier that operates over a
feature extraction is implemented by dividing the image int small number of features with the performance of a classifier
small spatial regions (or “cells”). For each cell a local 1that operates over a very large number of features. Similarl
D histogram of gradient directions is accumulated over thhu and Avidan [25] followed the same approach with the
pixels found in that cell. To make the method invariant tdntegral HOG features by varying the size of blocks, which
illumination and shadowing, the authors also normalize this another key difference compared to the original HOG
local responses. The HOG feature descriptor as an objeepresentation and a linear SVM as a weak classifier. While
representation has been used successfully to classifgtebjefixed-size blocks (typicallyl6 x 16 pixels) are used in the
in combination with a linear SVM. However, dense HOGoriginal HOG, in the Integral HOG case, variable-size bkck
representation is unfortunately computationally toonstee are used instead. Combined with constructing a rejector-
for a real-time application. To solve this proble@hu and based cascade, weak classifiers with fixed-sized blocks are
Avidan [25] proposed a novel method by exploiting thenot informative enough to allow fast rejection in the early
concept of Integral HOG. The Integral HOG is an extensiostages of the cascade. Thus, they use a much larger set of
of original HOG features for a fast evaluation. It is insplire blocks that vary in size, location and aspect ratio and tlsen u
by “integral image” [21] which allows very fast extraction AdaBoost to select the best feature to be evaluated in each
of Haar-like features and the “Integral Histogram” [17]stage, where each feature corresponds to one block. Then,
which allows efficient histogram computation over arbigrar they construct a cascade of classifiers using weak classifier
rectangular image regions. associated with these features.

Following their work, we exploit a fast method of calcu- In our system, there are over 2,909 variable-size blocks
lating the HOG features. The first difference with originalassociated with frontal view detection window because we
HOG representation comes from how the result of gradientse a64 x 128 detection window and consider variable block
of the image is saved. For each bin of the HOG, an integralze ranges from2 x 12 to 64 x 128 and width/height ratios
image is computed and is saved separately. Since we ude: 1), (1 : 2), and (2 : 1). Even though the number of
nine orientation bins, nine integral images are constdicteall possible variable-size blocks is very large, the priynar
These integral images are used later to compute efficientigssumption of AdaBoost, which has been proven empirically,
the HOG for any rectangular image region only withx 9  is that a very small number of these features can be combined
image access operations. to form an effective classifier [21]. A graphical summary of



the boosting process is shown in Figure 2. In the AdaBoo
algorithm, each round of boosting selects one feature fro
the 2,909 potential features. It means that we can select o
best classifier that minimizes the overall error. Afterveard
we re-weight all the data to focus on the mistakes. In ot |
next iteration, we can find the next best classifier baseden t
weighted data. Finally, we construct a cascade of classifie
by combining all the classifiers at the end according to the

confidence. '

C. View-based Detector

Our last question is that how we can deal with dramati a) Front (0°)
appearance changes of a bicyclist according to its viewtpoin
without violating the real-time constraints. HOG represen Fig. 3. HOG representation of each viewpoint of a bicyclist
tation of some viewpoints of a bicyclist is visualized in
Figure 3. In this paper, we propose to use four view-based
detectors: frontal, rear and right/left side view. Of cayrs
these four view Integral HOG representation of a bicycl
cannot cover all variability in appearance, but we believ
that this is a reasonable approach in that four views cgi)

capture pretty much of its characteristic; and adding mOthwe propose a multiple patch-based approach of the Lucas-
view detector (i.e45° or 135°) does not improve detection anade algorithm. Rather than using one big template, we

accuracy _enough o compensatg add|t|ongl computation. iRd a set of good features using a Harris corner detector [11]
support this argument, a comparison experiment between six

ARd then try to track each of these multiple small patches
view detector (includingt5° and 135° views) and our four y P b

: A ) . . independently using the Lucas-Kanade algorithm. However,
view detector is conducted and discussed in Section V. Fgr >P y using g

. ) ) . .as illustrated in Figure 4(a), we cannot guarantee that all
each view detector, as discussed in the previous subsect‘{%

0)45°  c)Side (90°) > ¢)Rear (180°)

which is generated by the detection process. To deal with
e fact that bicyclists are non-rigid (the person’s legs ar
pically in constant motion, and the appearance of the
cycle changes drastically between frontal and side Views

the main concern s to find a set of variable-size blocks whi e multiple patches are necessarily found on the bicyclist
- e hile most of them are on the bicyclist, showing similar
maximize overall classification accuracy.

optical flow vectors, some of them are on a background,
IV. FAST BICYCLIST TRACKING showing quite different motion vectors. Thus, an additlona
step is required to filter out these unnecessary patches. We

Once the bicyclist has been detected in the image, the nzﬁ%pose a novel mechanism that we will describe below.

step is to track his/her position from frame to frame. Beeau
of the relatively high cost of the detector, we are intersteg. Control Scheme of Multiple Patches

in finding an algorithm with a lower complexity in order .
g 9 plexity We propose a new method to control geometric con-

to do tracking. Tracking exploits motion-related temporal , ", . .
constraints to find the correspondence of moving objec? ralnts of multiple patches b_ase_d on spectral clustering
in the image sequence. To this end, several mathemati gonthm [23]. Spectral clustering is a popular graph biase

frameworks have been proposed (this is roughly discussgaodte[)n tclulsterlng slgorllthrg. I;rls_nottl ogly stlmgle éol-lmple-l
in Section 1l). After performing a comparative investigeti ment but aiso can be solved efliciently by standard inear ai-

of these existing tracking techniques, we chose to applygaebra methods. We found that a spectral clustering algorith

traditional Lucas-Kanade tracker [14] to our frameworkeTh gives a formal mathematical tool to tackle our problerr.l- na
onsistent way. In our problem context, spectral clustgisn

reason for this decision is that it can be integrated with olf d on random walks on imilarity araph constructed
high-level patch management scheme to show promising p%_se on rando alks on a similarity graph constructe

formance in general settings and various efficient extessio. y the multiple patches. Then, spectral clustering can be

of the algorithm have been proposed to allow its real-tim terpreted as trying to find a partition of the graph such
implementation at the random walk stays long within the same cluster and

seldom jumps between clusters. The random walk can be
A. Multiple Patch-based Lucas-Kanade Tracker formulated via following three steps:

The Lucas-Kanade tracker is one of the most popular ¢ Step 1:Construct a similarity graph.
versions of two-frame differential methods for motion es- * Step 2:Assign weights to the edges in the graph.
timation. The goal of the Lucas-Kanade algorithm is to * Step 3:Define a transition probability matrix.
compute optical flow by minimizing the sum of squaredn first step, we can connect each patch to Atsiearest
error between two subsequent images in the video sequenneighbors, or connect each patch to all neighbors within
the templateT and the imagel warped back onto the A similarity function, which defines the edge weights in the
coordinate frame of the template. In the case of bicyclistecond step, plays a pivotal role in getting good clustering
tracking, the template is a region containing a bicyclisperformance. Here, we use a magnitude difference of optical



Algorithm 1 Patch management scheme based on spectral
clustering algorithm
. Require: Similarity matrix S € R, number of clusterg:
1: Construct a similarity graph using -nn.
2: Make its weighted adjacency matriX using (1).
LR 3: Compute the normalized Laplacian:
Lgym = D™Y/2LD~1/2,
4: Compute the firsk eigenvectors, ..., vy Of Lgym,.
Fig. 4. Example of patch management scheme. (a) Selectetigsaby 5:Let V. € R"*" be the matrix containing the vectors
Harris corner detector (b) Optical flow of each patch (c) 3similarity v1, ..., v @S columns.
graph (d) Clustering result 6: Form the matrixU € R"** form V' by normalizing the
row sums to have norm 1, thatis; = v;; /(32 v2,)"/2.

7: Let all y; € R* be the vector corresponding to th¢h
flow vectors as well as distance among multiple patches. row of U. ) ,
Note that the direction of optical flow vectors cannot be a® _Cluster the patch€gi)i-1,....» With k-means algorithm
good measure since it shows convergent or divergent pattern into clustersCt, ..., C. ) )
of flow when a bicycle shows longitudinal motion. ourEnsure: ClustersAy, ..., Ay with 4; = {jly; € Ci}
similarity function is thus defined by:

© @

s(wi, x;) = e~ CllmimzillFBlmi=msl) (1)  A. Probabilistic Analysis of Detector

where o and 3 are constants. The closer the patches and From @ practical perspective, it is very important to
the smaller a magnitude difference of the patches, the highgonstruct a classifier producing a posterior probabilitye T
the weight. Finally, we define a Markov random walk ovelProbabilistic output of a classifier can help in post-preaes

the similarity graph by constructing a transition probabiISUCh as when combining more classifiers together or when

ity matrix from the edge weights. Formally, the transitiond€nerating a Precision-Recall (PR) curve to analyze a clas-
probability of jumping in one step from patchto patch S|f|er’§ performance. However, the output of Su_pporF Vector
j is proportional to the edge weight;; and is given by Machines (SVMs) and AdaBoost that we use in this work

pij = wi/d; whered; = Z_j w;;. Then, the transition is an uncalibrated value, no't a probability. To_ solve this
probability matrix of the random walk is defined by: problem, we implement Platt's method [16] which convert
a classifier output to a calibrated posterior probability fo
P=D1w (2) probabilistic analysis. According to [16], the motivation
for this method is using a parametric model to fit the
Spectral clustering, which can be viewed as a outliers dgosterior P(y = 1|f) directly instead of estimating the
tection process in this case, is performed by normalizeglass-conditional densitigg f|y). The author trains an SVM
spectral clustering algorithm proposed by Ng, Jordan, arfitst and then trains the parameters of an additional sigmoid
Weiss [23]. Algorithm 1 describes the whole process ofunction to map the SVM outputs into probabilities. As for
our patch management scheme. We run this algorithm g@fe parametric model, the author suggests using a form of
every frame and we filter out bad patches by averaging itdgmoid, which is expressed by:
clustering results. 1
Ply=11) 1+exp(Af+ B) 3)

| . King f K The parameters ol and B are fit using maximum likelihood
We evaluated our detection and tracking framewor USsstimation from a training set. We implement their method

ing various real world datasets. We first conducted front% convert the outputs of SVMs/Adaboost to posterior prob-

and side view bicyclist detection experiments using a NeWjiies syccessfully. Furthermore, we use their proltgbi
bicyclist dataset which we collected from the Internet. Th%utputs to generate a PR curve for a comparison of the
original HOG based detector was tested first and then re erformance of original HOG and Integral HOG based

time enhancement using the Integral HOG and AdaBoost w tectors
compared with the first method. With regard to bicycle track-
ing, we collected video data from suburban environmen®. Performance Analysis of Detector

using our autonomous vehicle “Boss”, Carnegie Mellon Uni- 1y oy picycle detection experiments, we used 130 of the
versity's first place winning vehicle from the 2007 DARPA hormalized imagessg x 128 for front view and128 x 128 for
Urban Challenge. Six video sequences were recorded. Thrgge view) along with their left-right reflections as posti
categories of the sequences are from stationary Boss and frﬁning samples. For the negative samples, we used 1218

other three sets are from moving Boss. Tracking experimer]pﬁageS from the INRIA Person dataetten times the
for each case using the multiple patch-based Lucas-Kanade

algorithm are also conducted. Lhttp://pascal.inrialpes.fridata/human/, accessed oy $13009

V. EXPERIMENTAL RESULTS



class: bicyclist, subset: test
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Fig. 5. PR curve for three detectors. The magenta plot shiogvselsponse |dgntlfled bf/vtr:g AodaBgoss(te afggntrz;gl ns and confidence vdalpha) as

for the brute-force HOG implementation and the blue and tetighow the
responses of the Integral HOG implementation for six view &our view,
respectively.
feature of each block. Our overall feature set consist 2,9
blocks of different sizes, locations and aspect ratios. The
positive examples) that included backgrounds that do néitst two levels in our cascade only contain four linear SVM
contain either pedestrians or bicycles. In the first expenitn classifiers each, and reject 70% of the detection windows.
we used 95 images with 124 labeled bicycles (front view:42F hus, the average number of blocks to be evaluated for each
45° or 135° view:42, side view:40) as a test set. We trainedietection window is as low as 6.4. The identical Hit Rate
a linear SVM using the training set and fitted a sigmoiqHR) points are selected and their corresponding numbers
function to the classifier output. The coefficiedtsind B for  of False Positives (FP) are compared between six view and
the sigmoid function (Equation 3) were found tobé.8260  four view-based detector. As shown in Table I, six view-
and0.5641, respectively. Second, we ran the original HOGhased detector entails more false positives. In addition, a
detector on the test images. Based on the statistics of dBR curve was compared with previous original HOG case in
test set and detection results, we computed basic metriegure 5. While this approach shows comparable results with
and generated a PR curve (Figure 5) for better analysige original HOG in terms of accuracy, in terms of speed, it
The identical recall rate and its corresponding number afhows a up to 30X speedup over the naive implementation
False Positives (FP) are shown in Table I. As discussed irsing the sliding windows.
Section Ill C, we feel the four view Integral HOG detector

is better in terms of its accuracy/efficiency. TABLE Il

DETAILS OF TWO IMAGE SEQUENCES USED IN THE EVALUATION

TABLE |
CLASSIFICATION RATES FOR BICYCLISTS USINGHOGs
Sequences Size No. of frames| FPS | No. of bicyclists
Detectors Hit Rate (%) | False Positives (#) ‘ﬁzﬁs?nnge}ry ggg i 338 13%7 ig i
Original HOG (four view) 65.12 175
Integral HOG (four view) 65.12 226
Integral HOG (six view) 65.12 248

C. Performance Analysis of Tracker

For the real-time enhancement method, we found out the Tracking experiments were conducted on the six videos
most informative blocks from which Integral HOG featuresvhich we collected from Boss. Three videos of a person
can be extracted. As an example of bicyclist detection, thiding a bicycle were recorded from Boss’s cameras while the
first feature selected by the AdaBoost algorithm seemed t@hicle was stationary and three more videos were obtained
be the overall shape of a bicyclist. Secondary and tertiafyjom Boss while it was in motion. Here, we evaluate the
features included the person’s head, their torso, and tleelwh Lucas-Kanade tracking algorithm with a patch management
of a bicycle. Several of these selected regions and thefi-conscheme based on spectral clustering algorithm using two
dence values (alpha) as generated by the AdaBoost algoritiimage sequences, each of which is one of the most chal-
are shown in Figure 6. Following the same approach whiclenging sequence from the two cases. In the stationary case,
Zhu et al. proposed in [25], the next step is to construct a bicyclist rides along the road in front of Boss and makes
cascade of weak classifiers. The cascade consists of 5 levalsu-turn” so that the left side, rear, and right-side of the
where the weak classifiers are linear SVMs using a 36-bicycle are seen and must be tracked. In moving case, both
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Fig. 7. Performance analysis of the tracker : stationarg aastop, moving case on bottom.

the bicyclist and Boss are moving along the road in the santkis case, the default set of parameters for the trackercoul
direction and Boss overtakes and passes the bicyclist. Thet account for the fast relative motion of the bicycle and
moving imagery situation has a background which undergoesliditional tuning work is required to address this issue.

ego-motion that depends on the camera motion as well as theDetection runs at 1 sec/frame on a P-IV 2GHz computer
scene structure. Table Il describes each image sequence.with 2GB memory and tracking runs at 0.6 sec/frame. Track-

For the performance of tracking, as partially shown ifnd is much more robust than detection in that, the target is
Figure 8, stationary cases show better tracking performanBardly lost; however, in the detection stage, a target may no
compared to moving cases. More detailed analysis for eabk detected all the time. Thus, we interleave detection and
case is investigated by computing tracking errors betwieen ttracking stages by applying detection every five frames or
ground truth trajectory and the estimated path of a bicyclis2ny time the tracking of a bicyclist is lost to find a balance
These errors refer to the Euclidean distance between the Brtween robust output and finding new bicyclists.
cyclist detection (centers of bounding boxes are consitjere
and the ground truth created by a trained professional. Fig- VIl. CONCLUSIONS AND FUTURE WORK
ure 7(b), 7(d) clearly illustrate the performance comparis  This paper presents a fast bicyclist detection and tracking
of our approach in two different sequences (see Figures finamework. To robustly detect bicycles, we have imple-
the details). An abrupt change in Figure 7(b), 7(d) is due tmented a system that uses Histograms of Oriented Gradients
the irregularity of video logging process. In our six videos(HOG) descriptors to extract features from images and then
the Lucas-Kanade tracker with a patch management scheeraploy a linear Support Vector Machine (SVM) to classify
based on spectral clustering algorithm successfully fdlck whether a given sub-image contains a bicycle. We have
bicyclist save for the case in which the bicyclist and Bogs araffected a dramatic speedup for the detection process by
both moving in the opposite direction and pass each other. integrating a cascaded classifier concept in combinatidm wi
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Fig. 8. Tracking results for bicyclist: stationary case

HOG features of variable-size blocks. Once the bicycle hago]
been detected in the image, the object is tracked in sub

guent video frames with a robust and flexible implementatio

e_
10]

of the Lucas-Kanade tracking algorithm modified to operate
over multiple small image patches. This multi-patch tracke1l
allows our system to effectively track the object even whep,

d[1 ]

it changes orientations in the image. We have implemented a

novel patch management scheme and integrated the methg

geﬁi

into our framework. Several experiments shows the effec-

tiveness of each component of the proposed framework. Ast

part of our future work, we will develop a tracking method

which takes into account the bicycle motion kinematics.
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